Graph Theory

Part One

Outline for Today

- Graphs and Digraphs
- Two fundamental mathematical structures.
- Graphs Meet FOL
- Building visual intuitions.
- Independent Sets and Vertex Covers
- Two structures in graphs.

Graphs and Digraphs

Chemical Bonds

Linked in

What's in Common

- Each of these structures consists of
- a collection of objects and
- links between those objects.
- Goal: find a general framework for describing these objects and their properties.

A graph is a mathematical structure for representing relationships.

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

Some graphs are directed.

Some graphs are undirected.

Graphs and Digraphs

- An undirected graph is one where edges link nodes, with no endpoint preferred over the other.
- Adirected graph (or digraph) is one where edges have an associated direction.
- (There's something called a mixed graph that allows for both, but they're fairly uncommon and we won't talk about them.)
- Unless specified otherwise:
"Graph" means "undirected graph"

Formalizing Graphs

- How might we define a graph mathematically?
- We need to specify
- what the nodes in the graph are, and
- which edges are in the graph.
- The nodes can be pretty much anything.
- What about the edges?

Formalizing Graphs

- An unordered pair is a set $\{a, b\}$ of two elements $a \neq b$. (Remember that sets are unordered.)
- For example, $\{0,1\}=\{1,0\}$
- An undirected graph is an ordered pair $G=(V, E)$, where
- V is a set of nodes, which can be anything, and
- E is a set of edges, which are unordered pairs of nodes drawn from V.
- A directed graph (or digraph) is an ordered pair $G=(V, E)$, where
- V is a set of nodes, which can be anything, and
- E is a set of edges, which are ordered pairs of nodes drawn from V.
- An unordered pair is a set $\{a, b\}$ of two elements $a \neq b$.
- An undirected graph is an ordered pair $G=(V, E)$, where - V is a set of nodes, which can be anything, and
- E is a set of edges, which are unordered pairs of nodes drawn from V.

How many of these drawings are of valid undirected graphs?
Respond at pollev.com/zhenglian740

Self-Loops

- An edge from a node to itself is called a self-loop.
- In (undirected) graphs, self-loops are generally not allowed.
- Can you see how this follows from the definition?
- In digraphs, self-loops are generally allowed unless specified otherwise.

The Great Graph Gallery

Is this formula true about this graph?
$\forall u \in V . \exists v \in V .\{u, v\} \in E$

$\forall u \in V . \exists v \in V .\{u, v\} \in E$

"for any node u "

$\forall \boldsymbol{u} \in \boldsymbol{V} . \exists v \in \mathbb{V} .\{u, v\} \in \mathbb{E}$

Respond at pollev.com/zhenglian740

Is this formula true about this graph?
$\exists u \in V . \forall v \in V .\{u, v\} \in E$

Is this formula true about this graph?
$\exists u \in V . \forall v \in V .\{u, v\} \in E$

Walks, Paths, and Reachability

Two nodes are called adjacent if there is an edge between them.

Two nodes are called adjacent if there is an edge between them.

Two nodes are called adjacent if there is an edge between them.

Two nodes are called adjacent if there is an edge between them.

Using our Formalisms

- Let $G=(V, E)$ be an (undirected) graph.
- Intuitively, two nodes are adjacent if they're linked by an edge.
- Formally speaking, we say that two nodes $u, v \in V$ are adjacent if we have $\{u, v\} \in E$.
- There isn't an analogous notion for directed graphs. We usually just say "there's an edge from u to v " as a way of reading $(u, v) \in E$ aloud.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

[^0]

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.
(This walk has length 10, but visits 11 cities.)

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

SF, Sac, LA, Phoe, Flag, Bar, LA

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

SF, Sac, LA, Phoe, Flag, Bar, LA

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A cycle in a graph is a closed walk that does not repeat any nodes or edges except the first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A cycle in a graph is a closed walk that does not repeat any nodes or edges except the first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A cycle in a graph is a closed walk that does not repeat any nodes or edges except the first/last node.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A cycle in a graph is a closed walk that does not repeat any nodes or edges except the first/last node.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

The length of the walk v_{1}, \ldots, v_{n} is $n-1$.

A closed walk in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A path in a graph is walk that does not repeat any nodes.

A cycle in a graph is a closed walk that does not repeat any nodes or edges except the first/last node.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A node v is reachable from a node u if there is a path from u to v.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A node v is reachable from a node u if there is a path from u to v.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A node v is reachable from a node u if there is a path from u to v.

A graph G is called connected if all pairs of distinct nodes in G are reachable.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A node v is reachable from a node u if there is a path from u to v.

A graph G is called connected if all pairs of distinct nodes in G are reachable.
(This graph is not connected.)

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A node v is reachable from a node u if there is a path from u to v.

A graph G is called connected if all pairs of distinct nodes in G are reachable.

A walk in a graph $G=(V, E)$ is a sequence of one or more nodes $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that any two consecutive nodes in the sequence are adjacent.

A path in a graph is walk that does not repeat any nodes.

A node v is reachable from a node u if there is a path from u to v.

A graph G is called connected if all pairs of distinct nodes in G are reachable.

A connected component (or CC) of G is a maximal set of mutually reachable nodes.

Fun Facts

- Here's a collection of useful facts about graphs that you can take as a given.
- Theorem: If $G=(V, E)$ is a graph and $u, v \in V$, then there is a path from u to v if and only if there's a walk from u to v.
- Theorem: If G is a graph and C is a cycle in G, then C 's length is at least three and C contains at least three nodes.
- Theorem: If $G=(V, E)$ is a graph, then every node in V belongs to exactly one connected component of G.
- Theorem: If $G=(V, E)$ is a graph, then G is connected if and only if G has exactly one connected component.
- Looking for more practice working with formal definitions? Prove these results!

Time-Out for Announcements!

Problem Set 1 Graded

$75^{\text {th }}$ Percentile: $44 / 49$
50 ${ }^{\text {th }}$ Percentile: $40 / 49$
25 ${ }^{\text {th }}$ Percentile: $30 / 49$

20.00

Pro tips when reading a grading distribution:

1. Standard deviations are malicious lies. Ignore them.
2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.

Problem Set 1 Graded

Problem Set 1 Graded

Problem Set 1 Graded

$75^{\text {th }}$ Percentile: 44/49
50 ${ }^{\text {th }}$ Percentile: $40 / 49$
25 ${ }^{\text {th }}$ Percentile: 30/49

"Looks like something hasn't quite clicked yet. Review your feedback and ask us questions when you have them. Get in touch with us and stop by office hours to get some extra feedback and advice. Don't get discouraged - you can do this!"

Problem Set Three

- Problem Set Two was due today at 5:30PM.
- Problem Set Three goes out today. It's due next Friday at 5:30PM.
- As always, ping us if you need help working on this one: post on EdStem or stop by office hours.

Preparing for the Exam

- We've posted a "Preparing for the Exam" page on the course website with full details and logistics.
- It also includes advice from former CS103 students about how to do well here.
- Check it out - there are tons of goodies there!

Practice Midterms

- We've also posted two practice midterms. These midterms were from the previous summer quarters, so they should approximate the difficulty and structure of the upcoming midterm.
- Our recommendation:
- Sometime during week 4 , sit down and take Practice Midterm 1 as if it were the actual exam.
- Identify any gaps in your understanding, and supplement with the extra practice problems as needed.
- Sometime during week 5 (before the real exam), sit down and take Practice Midterm 2.
- Please do not read the solutions to a problem until you have worked through it.

Back to CS103!

Independent Sets and Vertex Covers

Two Motivating Problems

Place park rangers in these forest trails so that a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that a hiker anywhere on a trail can see a park ranger.

Choose at least one endpoint of each edge.

Choose at least one endpoint of each edge.

Choose at least one endpoint of each edge.

Choose at least one endpoint of each edge.

Vertex Covers

- Let $G=(V, E)$ be an undirected graph. A vertex cover of G is a set $C \subseteq V$ such that the following statement is true:
> $\forall \boldsymbol{x} \in \boldsymbol{V} . \forall \boldsymbol{y} \in \boldsymbol{V} .(\{\boldsymbol{x}, \boldsymbol{y}\} \in \boldsymbol{E} \rightarrow(\boldsymbol{x} \in \boldsymbol{C} \mathbf{v} \boldsymbol{y} \in \boldsymbol{C}))$ ("Every edge has at least one endpoint in C.")
- Intuitively speaking, a vertex cover is a set formed by picking at least one endpoint of each edge in the graph.
- Vertex covers have applications to placing streetlights/benches/security guards, as well as in gene sequencing, machine learning, and combinatorics.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Set up nests for the California condor. Condors are territorial and won't nest if they can see other condors.

Choose a set of nodes, no two of which are adjacent.

Independent Sets

- If $G=(V, E)$ is an (undirected) graph, then an independent set in G is a set $I \subseteq V$ such that
$\forall u \in I . \forall v \in I .\{u, v\} \notin E$. ("No two nodes in I are adjacent.")
- Independent sets have applications to resource optimization, conflict minimization, error-correcting codes, cryptography, and more.

A Connection

Independent sets and vertex covers are related.

What's special about the square (\square) nodes?

What's special about the plus (+) nodes?

Independent sets and vertex covers are related.

What's special about the square (\square) nodes?

What's special about the plus (+) nodes?

Theorem: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. Then C is a vertex cover of G if and only if $V-C$ is an independent set in G.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set in G.

What We're Assuming

G is a graph.
C is a vertex cover of G.
$\forall u \in V . \forall v \in V .(\{u, v\} \in E \rightarrow$ $u \in C \quad v \quad v \in C$
)

What We Need To Show

$V-C$ is an independent set in G.

$$
\begin{aligned}
& \forall x \in V-C . \\
& \forall y \in V-C . \\
& \quad\{x, y\} \notin E .
\end{aligned}
$$

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set in G.

What We're Assuming

G is a graph.
C is a vertex cover of G.

$$
\begin{aligned}
& \forall u \in V . \forall v \in V .(\{u, v\} \in E \rightarrow \\
&)^{u \in C} v v \in C
\end{aligned}
$$

We're assuming a universallyquantified statement. That means we don't do anything right now and instead wait for an edge to present itself.

What We Need To Show

$V-C$ is an independent set in G.

$$
\forall x \in V-C .
$$

$$
\begin{aligned}
& \forall y \in V-C . \\
& \quad\{x, y\} \notin E .
\end{aligned}
$$

> We need to prove a universallyquantified statement. We'll ask the reader to pick arbitrary choices of x and y for us to work with.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then
$V-C$ is an independent set in G.

What We're Assuming

G is a graph.
C is a vertex cover of G.

$$
\begin{aligned}
& \forall u \in V . \forall v \in V .(\{u, v\} \in E \rightarrow \\
&)^{u \in C} v v \in C
\end{aligned}
$$

What We Need To Show

$V-C$ is an independent set in G.

$$
\forall x \in V-C .
$$

$$
\begin{aligned}
& \forall y \in V-C . \\
& \quad\{x, y\} \notin E .
\end{aligned}
$$

> We need to prove a universallyquantified statement. We'll ask the reader to pick arbitrary choices of x and y for us to work with.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set in G.

What We're Assuming

G is a graph.
C is a vertex cover of G.
$\forall u \in V . \forall v \in V .(\{u, v\} \in E \rightarrow$ $u \in C \quad v \quad v \in C$
)
$x \in V-C$.
$y \in V-C$.
$V-C$ is an independent set in G.

$$
\begin{aligned}
& \forall x \in V-C . \\
& \forall y \in V-C . \\
& \quad\{x, y\} \notin E .
\end{aligned}
$$

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.

Proof:

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.

Proof: Assume C is a vertex cover of G.

There's no need to introduce G or C here.
That's done in the statement of the lemma itself.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.

Proof: Assume C is a vertex cover of G. We need to show that $V-C$ is an independent set of G.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.
Proof: Assume C is a vertex cover of G. We need to show that $V-C$ is an independent set of G. To do so, pick any nodes $x, y \in V-C$; we will show that $\{x, y\} \notin E$.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.
Proof: Assume C is a vertex cover of G. We need to show that $V-C$ is an independent set of G. To do so, pick any nodes $x, y \in V-C$; we will show that $\{x, y\} \notin E$.
Suppose for the sake of contradiction that $\{x, y\} \in E$.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.
Proof: Assume C is a vertex cover of G. We need to show that $V-C$ is an independent set of G. To do so, pick any nodes $x, y \in V-C$; we will show that $\{x, y\} \notin E$.
Suppose for the sake of contradiction that $\{x, y\} \in E$. Because $x, y \in V-C$, we know that $x \notin C$ and $y \notin C$.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.
Proof: Assume C is a vertex cover of G. We need to show that $V-C$ is an independent set of G. To do so, pick any nodes $x, y \in V-C$; we will show that $\{x, y\} \notin E$.
Suppose for the sake of contradiction that $\{x, y\} \in E$. Because $x, y \in V-C$, we know that $x \notin C$ and $y \notin C$. However, since C is a vertex cover of G and $\{x, y\} \in E$, we also see that $x \in C$ or $y \in C$, contradicting our previous statement.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.
Proof: Assume C is a vertex cover of G. We need to show that $V-C$ is an independent set of G. To do so, pick any nodes $x, y \in V-C$; we will show that $\{x, y\} \notin E$.

Suppose for the sake of contradiction that $\{x, y\} \in E$. Because $x, y \in V-C$, we know that $x \notin C$ and $y \notin C$. However, since C is a vertex cover of G and $\{x, y\} \in E$, we also see that $x \in C$ or $y \in C$, contradicting our previous statement.
We've reached a contradiction, so our assumption was wrong.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.
Proof: Assume C is a vertex cover of G. We need to show that $V-C$ is an independent set of G. To do so, pick any nodes $x, y \in V-C$; we will show that $\{x, y\} \notin E$.

Suppose for the sake of contradiction that $\{x, y\} \in E$. Because $x, y \in V-C$, we know that $x \notin C$ and $y \notin C$. However, since C is a vertex cover of G and $\{x, y\} \in E$, we also see that $x \in C$ or $y \in C$, contradicting our previous statement.
We've reached a contradiction, so our assumption was wrong. Therefore, we have $\{x, y\} \notin E$, as required.

Lemma 1: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is a vertex cover of G, then $V-C$ is an independent set of G.

Proof: Assume C is a vertex cover of G. We need to show that $V-C$ is an independent set of G. To do so, pick any nodes $x, y \in V-C$; we will show that $\{x, y\} \notin E$.

Suppose for the sake of contradiction that $\{x, y\} \in E$. Because $x, y \in V-C$, we know that $x \notin C$ and $y \notin C$. However, since C is a vertex cover of G and $\{x, y\} \in E$, we also see that $x \in C$ or $y \in C$, contradicting our previous statement.
We've reached a contradiction, so our assumption was wrong. Therefore, we have $\{x, y\} \notin E$, as required. ■

Taking Negations

- What is the negation of this statement, which says " C is a vertex cover?"

$$
\begin{aligned}
& \forall u \in C . \forall v \in C .(\{u, v\} \in E \rightarrow \\
& u \in C \quad v \quad v \in C
\end{aligned}
$$

Respond at pollev.com/zhenglian740

Taking Negations

- What is the negation of this statement, which says " C is a vertex cover?"

$$
\begin{aligned}
& \neg \forall u \in C . \forall v \in C .(\{u, v\} \in E \rightarrow \\
& \quad u \in C \quad v \quad v \in C
\end{aligned}
$$

Taking Negations

- What is the negation of this statement, which says " C is a vertex cover?"

$$
\begin{aligned}
& \exists u \in C . \neg \forall v \in C .(\{u, v\} \in E \rightarrow \\
& u \in C \quad v \quad v \in C
\end{aligned}
$$

Taking Negations

- What is the negation of this statement, which says " C is a vertex cover?"

$$
\begin{aligned}
& \exists u \in C . \exists v \in C . \neg(\{u, v\} \in E \rightarrow \\
& u \in C \quad v \quad v \in C
\end{aligned}
$$

Taking Negations

- What is the negation of this statement, which says " C is a vertex cover?"

$$
\begin{aligned}
& \exists u \in C . \exists v \in C .(\{u, v\} \in E \wedge \\
& \neg(u \in C \quad v \quad v \in C) \\
&)
\end{aligned}
$$

Taking Negations

- What is the negation of this statement, which says " C is a vertex cover?"

$$
\begin{aligned}
& \exists u \in C . \exists v \in C .(\{u, v\} \in E \wedge \\
& \quad u \notin C \quad \wedge \quad v \notin C
\end{aligned}
$$

Taking Negations

- What is the negation of this statement, which says " C is a vertex cover?"

$$
\begin{aligned}
& \exists u \in C . \exists v \in C .(\{u, v\} \in E \wedge \\
& u \notin C \wedge \vee \notin C
\end{aligned}
$$

- This says "there is an edge where both endpoints aren't in C."

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set in G.

What We're Assuming

G is a graph.
C is a not a vertex cover of G.

$$
\begin{aligned}
& \exists u \in V . \exists v \in V .(\{u, v\} \in E \wedge \\
&) \quad u \notin C \wedge v \notin C
\end{aligned}
$$

What We Need To Show

$V-C$ is not an ind. set in G.

$$
\begin{aligned}
& \exists x \in V-C . \\
& \exists y \in V-C . \\
& \quad\{x, y\} \in E .
\end{aligned}
$$

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be

 a set. If C is not a vertex cover of G, then $V-C$ is not an independent set in G.
What We're Assuming

G is a graph.
C is a not a vertex cover of G.

```
\existsu\inV.\existsv\inV.({u,v}\inE^
    u\not\inC ^ v\not\inC
)
```

We're assuming an existentially-quantified statement, so we'll immediately introduce variables U and V.

What We Need To Show

$V-C$ is not an ind. set in G.

$$
\exists x \in V-C .
$$

$\exists y \in V-C$.
$\{x, y\} \in E$.

We're proving an existentially-quantified statement, so we don't introduce variables χ and y. We're on a scavenger hunt!

What We're Assuming

G is a graph.
C is a not a vertex cover of G.
$u \in V-C$.
$v \in V-C$.
$\{u, v\} \in E$.

We're assuming an existentially-quantified statement, so we'll immediately introduce variables U and V.

What We Need To Show

$V-C$ is not an ind. set in G.

$$
\exists x \in V-C .
$$

$\exists y \in V-C$.
$\{x, y\} \in E$.

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set in G.

What We're Assuming

G is a graph.
C is a not a vertex cover of G.

$$
\begin{aligned}
& u \in V-C . \\
& v \in V-C . \\
& \{u, v\} \in E .
\end{aligned}
$$

What We Need To Show

$V-C$ is not an ind. set in G.

$$
\exists x \in V-C .
$$

$$
\exists y \in V-C .
$$

$$
\{x, y\} \in E .
$$

Any ideas about what
we should pick X and y to be?

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.

Proof:

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.
Proof: Assume C is not a vertex cover of G.

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.

Proof: Assume C is not a vertex cover of G. We need to show that $V-C$ is not an independent set of G.

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.

Proof: Assume C is not a vertex cover of G. We need to show that $V-C$ is not an independent set of G.
Since C is not a vertex cover of G, we know that there exists nodes $x, y \in V$ where $\{x, y\} \in E$, where $x \notin C$, and where $y \notin C$.

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.

Proof: Assume C is not a vertex cover of G. We need to show that $V-C$ is not an independent set of G.
Since C is not a vertex cover of G, we know that there exists nodes $x, y \in V$ where $\{x, y\} \in E$, where $x \notin C$, and where $y \notin C$. Because $x \in V$ and $x \notin C$, we know that $x \in V-C$.

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.

Proof: Assume C is not a vertex cover of G. We need to show that $V-C$ is not an independent set of G.
Since C is not a vertex cover of G, we know that there exists nodes $x, y \in V$ where $\{x, y\} \in E$, where $x \notin C$, and where $y \notin C$. Because $x \in V$ and $x \notin C$, we know that $x \in V-C$. Similarly, we see that $y \in V-C$.

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.

Proof: Assume C is not a vertex cover of G. We need to show that $V-C$ is not an independent set of G.
Since C is not a vertex cover of G, we know that there exists nodes $x, y \in V$ where $\{x, y\} \in E$, where $x \notin C$, and where $y \notin C$. Because $x \in V$ and $x \notin C$, we know that $x \in V-C$. Similarly, we see that $y \in V-C$.
This means that $\{x, y\} \in E$, that $x \in V-C$, and that $y \in V-C$, and therefore that $V-C$ is not an independent set of G, as required.

Lemma 2: Let $G=(V, E)$ be a graph and let $C \subseteq V$ be a set. If C is not a vertex cover of G, then $V-C$ is not an independent set of G.

Proof: Assume C is not a vertex cover of G. We need to show that $V-C$ is not an independent set of G.
Since C is not a vertex cover of G, we know that there exists nodes $x, y \in V$ where $\{x, y\} \in E$, where $x \notin C$, and where $y \notin C$. Because $x \in V$ and $x \notin C$, we know that $x \in V-C$. Similarly, we see that $y \in V-C$.
This means that $\{x, y\} \in E$, that $x \in V-C$, and that $y \in V-C$, and therefore that $V-C$ is not an independent set of G, as required. \square

Recap for Today

- A graph is a structure for representing items that may be linked together. Digraphs represent that same idea, but with a directionality on the links.
- Graphs can't have self-loops; digraphs can.
- Vertex covers and independent sets are useful tools for modeling problems with graphs.
- The complement of a vertex cover is an independent set, and vice-versa.

Next Time

- The Pigeonhole Principle
- A simple, powerful, versatile theorem.
- Graph Theory Party Tricks
- Applying math to graphs of people!

[^0]: SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

